Endothelial cell growth factor and heparin regulate collagen gene expression in keloid fibroblasts.

نویسندگان

  • E M Tan
  • J Peltonen
چکیده

Keloids are benign cutaneous tumours characterized by excess deposition of collagen, specifically type I collagen. We report here that collagen biosynthesis, as measured by hydroxyproline synthesis, was markedly inhibited by 65-80% by the combination of endothelial cell growth factor (ECGF) supplement and heparin in keloid fibroblast cultures. Fibroblast cultures that were incubated with ECGF alone also demonstrated a measurable decrease of approx. 50% in collagen synthesis compared with control cultures. The inhibition of collagen synthesis was related to the down-regulation of collagen gene expression. Quantitative measurements of mRNA-cDNA hybrids revealed that the gene expression of collagen type I was decreased by more than 80% by heparin and ECGF. Markedly diminished levels of mRNA encoding collagen type I were also observed in cultures incubated with ECGF alone. The results show that ECGF and heparin elicit a negative regulatory effect on collagen production, and that this inhibition is due largely to the down-regulation of the pro-alpha 1(I) of type I collagen gene. Furthermore, ECGF has a potent suppressive effect, and heparin provides an additive effect to this inhibitory phenomenon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep and superficial keloid fibroblasts contribute differentially to tissue phenotype in a novel in vivo model of keloid scar.

BACKGROUND Keloids are thick fibrous scars that are refractory to treatment and unique to humans. The lack of keloid animal models has hampered development of effective therapies. The authors' goal was to develop an animal model of keloids using grafted engineered skin substitutes composed of keloid-derived cells. To demonstrate the model's utility, differences between deep and superficial kelo...

متن کامل

Differential glucocorticoid regulation of collagen mRNAs in human dermal fibroblasts. Keloid-derived and fetal fibroblasts are refractory to down-regulation.

Abnormal regulation of collagen synthesis has been observed in fibroblasts from keloids, benign collagenous tumors that develop as a result of an inherited defect in dermal wound healing. Hydrocortisone reduces the rate of collagen synthesis in fibroblasts from normal adult dermis and scars, but fails to down regulate collagen synthesis in keloid-derived fibroblasts. We show here that loss of g...

متن کامل

Hepatoma-derived growth factor and its role in keloid pathogenesis

Hepatoma-derived growth factor (HDGF) is a novel mitogenic growth factor that has been implicated in many different carcinomas. Its role in keloid biology has not yet been investigated. The present study is aimed at examining the role of HDGF in keloid pathogenesis. Immunohistochemical staining and Western blot analyses were used to examine in vivo localization and expression of HDGF in keloid ...

متن کامل

The Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study

Background  Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collagen type I gene ...

متن کامل

The Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study

  Objective(s): Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 278 ( Pt 3)  شماره 

صفحات  -

تاریخ انتشار 1991